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Abstract 

 

This paper features two studies confirming a lasting impact of first learning on how 

subsequent experience is weighted in early relevance-filtering processes. In both 

studies participants were exposed to sequences of sound that contained a regular 

pattern on two different timescales. Regular patterning in sound is readily detected by 

the auditory system and used to form “prediction models” that define the most likely 

properties of sound to be encountered in a given context. The presence and strength of 

these prediction models is inferred from changes in automatically elicited components 

of auditory evoked potentials. Both studies employed sound sequences that contained 

both a local and longer-term pattern. The local pattern was defined by a regular 

repeating pure tone occasionally interrupted by a rare deviating tone (p=0.125) that 

was physically different (a 30ms vs. 60ms duration difference in one condition and a 

1000Hz vs. 1500Hz frequency difference in the other). The longer-term pattern was 

defined by the rate at which the two tones alternated probabilities (i.e., the tone that 

was first rare became common and the tone that was first common became rare). There 

was no task related to the tones and participants were asked to ignore them while 

focussing attention on a movie with subtitles. Auditory-evoked potentials revealed long 

lasting modulatory influences based on whether the tone was initially encountered as 

rare and unpredictable or common and predictable.  The results are interpreted as 

evidence that probability (or indeed predictability) assigns a differential information-

value to the two tones that in turn affects the extent to which prediction models are 

updated and imposed.  These effects are exposed for both common and rare 

occurrences of the tones. The studies contribute to a body of work that reveals that 

probabilistic information is not faithfully represented in these early evoked potentials 

and instead exposes that predictability (or conversely uncertainty) may trigger value-

based learning modulations even in task-irrelevant incidental learning.



Keywords: Auditory evoked potentials, sequential learning, predictive coding, mismatch 

negativity, primacy bias. 

 

 

  



1. Introduction 

Our auditory system is incredibly adept at learning any patterning within a sequence of 

sound (Cowan, Winkler, Teder & Näätänen, 1993; Bendixen, Roeber & Schröger, 2007). 

Any form of regularity within a sequence is readily extrapolated into an inferred 

repetition, even without focused attention, and also during early stages of sleep (Loewy, 

Campbell & Bastien, 1996; Sculthorpe, Ouellet & Campbell, 2009). In the auditory 

evoked potential literature this inference has been referred to as the formation of a 

“prediction model” referencing a memory-based anticipation of the most likely 

properties of sound to be encountered in a given context (Näätänen, Tervaniemi, 

Sussman et al., 2001; Winkler, 2007). This inference is further weighted by an estimate 

of “certainty” in the underlying prediction (Winkler, 2009; Pouget, Drugomitsch, & 

Kepecs, 2016). In computational biology it has been presented in the Bayesian 

framework of predictive coding as an “internal model” referencing a “belief” about the 

most likely next-state of brain activation, with this belief weighted by the “precision” 

afforded by prior evidence (Friston, 2005; Garrido, Kilner, Stephan & Friston, 2009; 

Lieder, Daunizeau, Garrido, Friston & Stephan, 2013). The existence and updating of an 

internal model is indexed in measures of auditory evoked potentials. 

 

When a sound matches the content of a currently active internal model the model 

precision estimate increments (Friston, 2005). This can be observed in changes in the 

evoked potential; principally in reduced negativity in the waveform recorded at fronto-

centrally located scalp electrodes within 200ms of sound onset and, at least in some 

cases, the emergence of an early positive component (Baldeweg, 2006). Both of these 

effects are amplified in the presence of further matches between model predictions and 

brain activation (in response to sensory input), and this progression is considered a 

quantification of model precision (for the term precision see Baldeweg, 2006; Garrido et 

al., 2008; Lieder et al., 2013 and for terms strength or confidence see Schröger, 2007; 

Näätänen, Kujala, & Winkler, 2011; Winkler, 2007; Winkler,  2009). If there is a 

mismatch between the internal state caused by the incoming sound (often called a 

“sensory buffer”, Winkler and Cowan, 2005) and model prediction, the evoked potential 

is characterised by a large negativity peaking 100-200ms from the deviation. This 

additional negativity (commonly known as mismatch negativity or MMN, see Näätänen, 

Kujala, & Winkler, 2011 for review) has been suggested to reflect a prediction-error 



being signalled (Friston, 2005). Prediction-errors are large if the internal model is 

associated with high precision, which occurs when there is low variance in the 

underlying repetition. For example, MMN to deviations from a repetitive pattern will be 

large when there are a large number of repetitions of the pattern between two 

successive deviations (e.g., Shelley et al., 1999, Sato et al. 2000), and when the repetition 

is exact (as opposed to repetition with some variance, Winkler et al., 1990; Daikhin & 

Ahissar, 2012; Garrido, Sahani & Dolan, 2013). However, we have previously observed 

that the sound probabilities at sequence onset appear to exhibit a disproportionately 

strong influence over precision estimates (Todd, Provost and Cooper, 2011). In analogy 

to other similar phenomena, we termed this effect “first-impression bias”. In 

psychology, “first impression” refers to the way in which future learning and memory 

can be anchored to the earliest experience in a given context. It is perhaps best known 

and documented in literature pertaining to how our beliefs about a person are heavily 

influenced by the first encounter (e.g., Willis & Todorov, 2006), but in the present study 

we demonstrate how first impressions affect many aspects of early automatic 

relevance-filtering processes.  

 

The first impression bias has been observed in protocols that include a simple sound 

sequence that contains patterns that alternate on different timescales (the “multi-

timescale paradigm”, Frost, Winkler, Provost & Todd, 2016; Todd, Provost & Cooper, 

2011; Todd et al., 2013, 2014a, 2014b; Mullens et al., 2014, 2016). In these experiments 

there are only two sounds in the sequence and these sounds exchange roles as a 

common repeating “standard” defining the local pattern (p=0.875), and rare pattern 

deviation or “deviant” (p=0.125) that differs physically from the other tone (hereafter 

referred to as context A). The local pattern alters at regular intervals when the roles of 

the sounds exchange (probabilities invert, context B), and these exchanges happen at 

regularly timed intervals creating a second-order (or superordinate) pattern embodied 

in the length of sequence blocks. The context change from A to B is abrupt and the 

former deviant starts repeating, generating a sequence of prediction-errors. These error 

signals are rapidly suppressed (within as few as 2-3 repetitions) as a new internal 

model is formed (Bendixen, Prinz, Horvath, Trujillo-Barreto & Schroger, 2008; Sams, 

Alho, & Näätänen, 1983). This reflects a locally dynamic predictive system keeping the 

auditory system adaptive and current. However, it has long been known that local 



probabilities are not the only influence on MMN amplitude to the deviant sounds (e.g., 

Horvath et al, 2001). One of the key findings in the multi-timescale paradigm is that the 

amplitude of MMN to the rare sounds is differently affected by local stability in the 

underlying pattern in context A and B (Todd et al., 2014). MMN to the sound-type that is 

rare in context A  (the “first-deviant”) is large at the beginning of sequence blocks and 

stays large into the second-half of blocks. In contrast, MMN to the sound that becomes 

deviant in context B (the “second-deviant”) is very small at the beginning of blocks and 

increases in amplitude into the second-half of blocks.  

 

In previous papers we have suggested that the different pattern of MMN amplitude in 

context A and B reflects a lasting first impression based on the initial sound 

probabilities (e.g., Todd et al., 2014, Mullens et al., 2016). We have proposed that high 

precision is assigned to the internal model for the repetitious sound in context A, 

specifying the behaviour of the sound that is first encountered as common and 

predictable. There is little value in updating this model, as its precision is already high 

(i.e., it is akin to a strong belief that is resistant to counter-evidence). In contrast, the 

auditory system has little information about the deviant in context A (the first-deviant) 

because this tone is rare (improbable in the context) and the timing of its occurrence 

cannot be accurately anticipated. MMN evoked in context A to this rare sound is large 

throughout blocks because the active internal model for context A is held with high 

precision producing large error signals when predictions are violated. When context B 

begins, the high precision for the internal model of context A may explain why the MMN 

evoked to the deviant in context B is small initially, but then later increases as evidence 

accumulates that the roles of the two sounds are reversed in the new context. 

 

Although first-impression biases have been replicated a number of times, the analysis of 

effects on ERP responses has only produced significant order effects on the evoked 

potential to the rare deviant. However, the hypothesis put forward to explain the bias 

would predict that we might also see order effects on the responses to the repetitious 

sounds if we examine the data most likely to show the effects. Models of learning 

predict that with higher uncertainty about an event, learning about this event becomes 

fast (for confirmation in an animal model, see Dayan & Yu, 2003; Pearce & Hall, 1980). 

In the multi-timescale paradigm, uncertainty about an event should be associated with 



more readiness to update the internal model in the face of new evidence. As noted 

above, at the point of role reversal, there is higher uncertainty associated with the 

sound that has been rare before, because the brain cannot anticipate when it will occur. 

Before the role reversal (in context A), the sound elicits a prediction-error signal, and 

when the context shifts from A to B, there is a sudden increase in the frequency of 

prediction errors as this sound starts to repeat and a new model needs to be built.  The 

mechanisms of new model formation have been studied in depth by Moran et al., (2013) 

in pharmacological studies employing the “roving paradigm” (e.g., Baldeweg et al., 

2002) where the repeating sound changes each time a deviation occurs (i.e., the deviant 

starts to repeat).  

 

Moran and colleagues (2013) provided evidence that the cholinergic system performs a 

critical role in establishing the precision associated with internal models of the auditory 

environment. The authors demonstrated that administering galantamine (a 

cholinesterase inhibitor that increases the availability of acetylcholine) enhanced the 

amplitude of responses to prediction errors and slowed model updating when a deviant 

started to repeat (akin to the change between context A and B). The slowed model 

updating was inferred from less suppression of the response to the new repeating 

sound. The authors further explain that when a stimulus is repeated in a highly 

predictable way, cholinergic neurotransmission is ordinarily suppressed after 

encountering an unpredicted or surprising event.  If the surprising event then repeats, 

the concurrent drop in acetylcholine levels enables rapid suppression of the response to 

the repeating sound as a new internal model is formed. This process is disrupted in the 

presence of galantamine because the boosted levels of acetylcholine interfere with the 

normal control over cholinergic levels, thus creating a state that can be regarded as 

prolonging high precision in the old model, resulting in high-amplitude error signals to 

the sound that is turning from deviant to standard. This interferes with the normal 

dynamics of model updating in the event of environmental change.  

 

We propose that the higher uncertainty associated with the sound that is rare in context 

A may play a role in the above described process. More specifically, we propose that we 

may see accelerated learning about this sound when it becomes a repetitious event. 

Prediction errors are learning signals because they signify that the current internal 



model does not accurately account for some events and thus may require updating 

(Shultz & Dickinson, 2000). When prediction errors are elicited with respect to a high-

precision model, the organism can be confident that the error is informative. Therefore 

when the error starts to repeat we predict that we may see accelerated learning or 

model updating. This should result in more prominent “suppression” in amplitude of 

the ERP to sound repetitions, particularly around the P2 period, which has been shown 

to be very sensitive to repetition effects and model stability (Baldeweg, 2006; Bendixen,  

Roeber & Schröger, 2007). To test this hypothesis we examined data acquired within 

two independent studies using the same temporal/sequential design: one using two 

sounds of different duration, and the other using two sounds of different 

frequency/pitch (delivered to a separate group of participants). Both groups of 

participants heard sequences that began with context A (and then alternated between 

context A and B). Then after a break, they heard the same alternating-context sequences 

now beginning with context B. Finally, after a second break, they heard the sequences 

beginning with context A again. We examined the responses to deviant and repetitious 

standard tones for these sequences to determine whether any order modulations of the 

response were present.  

 



2. Method 

 

2.1 Participants 

The data presented in this paper are derived from two separate studies using the 

multi-timescale protocol with identical temporal and sequential parameters, but 

different sound properties. Twenty-four participants (18-45 years, 13 female) heard 

sequences that comprised two pure tones of different duration (see Duration Protocol 

below) and sixteen participants (18-25 years, 10 female) heard sequences comprising 

two pure tones of two different frequencies (see Frequency Protocol). All participants 

were recruited from a pool of undergraduate Psychology students at the University of 

Newcastle and community participants from a volunteer research register and all 

provided written informed consent. To be included in the study all participants had to 

pass screening for the following exclusion criteria:  regularly consumed alcohol heavily 

or used recreational drugs, had a first degree relative with schizophrenia, had a history 

of neurological disorder, head injury or surgery or a hearing impairment (see Hearing 

Assessment below).  The study was approved by the Human Research Ethics Committee 

of the University of Newcastle, Australia. 

 

2.2 Stimuli and Sequences 

2.2.1 Duration Protocol 

A pictorial depiction of the sequences used in this study is presented in Figure 1. The 

Duration Protocol sequences contained a short 30ms sound and a longer 60 ms sound 

that were both presented at 1000 Hz, 75 dB SPL binaurally over headphones 

(Sennheiser HD280pro) at a regular 300ms onset-to-onset interval with 5 ms rise/fall 

times. There were an equal number of both sounds (980 each) in all sequences and they 

were organised into two block types. In context A blocks the 30ms sound was the highly 

probable standard (p=0.875) and the 60m sound was the rare deviant (p=0.125). In 

context B blocks the probabilities were reversed. In all cases the tones occurred in a 

pseudorandom order such that all blocks began with 5 repetitions of the standard tone 

and there were always a minimum of three standards between successive deviants.  

 

In slow-change sequences the context inverted every 480 tones (2.4 minutes) and in the 

fast-change sequences the context inverted more frequently, every 180 tones (0.8 



minutes). Thus the two context blocks alternated in both type of sequences. These two 

sequences were presented in pairs (referred to as orders in Figure 1) where the slow 

changing sequence always preceded the fast changing sequence, with a 40-second 

period of silence between the sequences within a pair, and a 2-minute silent period 

between orders. The first and third order began with context A blocks and the second 

order began with context B blocks.  

 

 

2.2.2 Frequency Protocol 

The Frequency Protocol sequences also contained only two sounds: a higher frequency 

1500 Hz sound and a lower frequency 1000 Hz sound that were both presented at 60 

ms, 75 dB SPL, with all other parameters being identical to those of the Duration 

Protocol. Context A blocks contained the 1000 Hz tone as the repetitive standard and the 

1500Hz tone as the rare deviant and in context B blocks the probabilities were reversed.  

 

< Figure 1 about here > 

 

2.3 Procedure 

Participants completed the screening interview followed by the Hearing Assessment that 

involved ensuring that hearing thresholds were below 20dB HL in both ears using a 

pure tone audiometer (Earscan ES3S) across 500-4000 Hz. 

 

EEG data for those who heard the Duration Protocol was collected using a 64 Channel 

ActiveTwo Biosemi system (2048Hz, Bandpass filter of DC-400Hz) with bilateral 

mastoid, outer canthi, supra-orbital, and infraorbital sites. Common mode sense (CMS) 

and driven right leg (DRL) electrodes for the biosemi active system were positioned 

inferior to P1 and P2, respectively. EEG data were recorded relative to an amplifier 

reference voltage, and then re-referenced to the common average. Biosemi data were 

converted to a Neuroscan compatible file type and down-sampled to 410Hz in 

EEGDisplay 6.4.6 (Fulham, 2015). 

 

EEG data for those who heard the Frequency Protocol was collected using a Synamps 2 

Neuroscan system at 1000Hz sampling rate (highpass 0.1Hz, lowpass 70Hz, notch filter 



50Hz and a fixed gain of 2010). EEG data was recorded from a reduced montage of 15 

electrode locations: including FZ, FCZ, CZ, PZ, F3, FC3, C3, F4, FC4, C4 in accordance with 

the 10–20 system plus left mastoid, right mastoid and nose reference. Vertical and 

horizontal electro-oculograms were also acquired from above and below the left eye 

and 1cm lateral to the outer cantus of each eye, respectively. Electrode impedances 

were reduced to below 5 kΩ for each electrode before recording commenced.  

 

For both protocols, the participant was told they would hear sounds over the 

headphones, but that the brain responses we were studying were automatic and best 

recorded if they ignored the sounds, and focussed their attention on a self-selected 

muted DVD delivered with subtitles. 

 

 

2.4 Data Analysis 

 

Continuous data from both experiments was analysed in Neuroscan. Data was first 

marked for extreme amplitudes and eyeblink corrected using Neuroscan’s in-built 

procedure (Semlitsch et al., 1986). The continuous data were epoched from -50 to 

300ms around stimulus onset and then baseline corrected over the whole epoch. Trials 

exceeding ±70 μV were rejected and the remaining trials were averaged, low-pass 

filtered (30Hz, 12dB/Octave, zerophase), re-baseline corrected over the pre-stimulus 

period and re-referenced to the average of the mastoid channels to increase signal-to-

noise ratio (Joutsiniemi et al., 1998).  

 

ERPs to sounds encountered as repeating “standards” and rare “deviants” were 

averaged separately resulting in a standard and deviant ERP for each tone, for each 

order and for each sequence (see Table 1 for how ERPs were averaged). In addition, 

previous work by our group has demonstrated that order effects are sometimes 

confined to the period in which a new regularity has just been established. Therefore, 

data from each sequence block was divided into a first and second half period (0-

1.2mins, 1.2-2.4 minutes respectively for slow changing sequences and 0-0.4 mins, 0.4-

0.8 mins respectively for the fast changing sequences). Two data sets were excluded 

from the frequency condition due to excessive noise during some of the fast sequence 



blocks. The sweeps contributing to half periods for each block were then combined to 

create a measure of the ERP to first and second halves, averaged across block 

occurrences, in order to assess whether pronounced order effects were confined to the 

first-half periods in these data sets also. Division of blocks into halves necessarily meant 

that a maximum of 60 sweeps could contribute to any deviant ERP. This low number 

risks a reduction in signal-to-noise ratio but because the signal is changing differentially 

over halves for the two tones, this has proven a reliable measure of significant half 

effects and interactions in previous studies. To protect against inclusion of noisy data in 

averages we set a minimum of 40 sweeps for any individual averages. In the frequency 

condition, all participants met the inclusion criterion of minimum 40 sweeps 

contributing to averages with over 90% of the individual averages containing 50 

sweeps or more. In the duration condition, five participants had less than 40 sweeps 

contributing to one or more of their averages with 85% of the individual averages 

containing 50 or more sweeps.  Averages for these five participants were visually 

inspected for quality (i.e., a clear ERP present in the average). Two participants failed to 

meet these criteria for one condition only, and in these cases the mean value for the 

group was substituted for their individual data.  The statistical analyses were run with 

and without these participants. As exclusion of these participants did not impact the 

major findings, their data was included in the analyses reported.  

 

<Table 1 about here> 

 

A mean peak amplitude measure was extracted for each deviant ERP (that is, a mean 

value of data points 5ms on either side of the negative maximum) using a search 

window of 100-250 ms for the duration data and 80-230 ms for the frequency data. A 

mean peak amplitude was extracted for the positive maximum in the standard ERP with 

search windows of 120-180 ms for both data. This window was chosen partly by visual 

inspection of the period of maximal condition effects on group averaged ERPs and 

partly based on our prior work showing maximal effects during the P2 period where 

expectation effects are often seen (Baldeweg, 2006; Todd et al., 2014). The amplitude 

measures were analysed at F4 (where effects have previously been observed to be 

maximal; e.g., Todd et al., 2011, Todd et al., 2014). 

 



To determine whether order effects were present in the data, a repeated measures 

ANOVA with within-subjects factors of sequence order (3 levels – 1, 2 and 3), sound (2 

levels - 1000Hz and 1500Hz for the frequency group and 30ms and 60ms for the 

duration group) and block half (first-half, second-half) was conducted for each sequence 

type and response type (deviant versus standard).  

 

3. Results 

Deviant ERPs – Slow-Changing Sequences 

Order effects are clearly evident in the ERP responses to the sounds when encountered 

as contextually rare deviants. Repeated measures ANOVA confirmed a significant three-

way interaction between sound, order and half for both the duration condition (F(2,44) 

=  4.84, p<0.05, η2=0.18, ε=.82) and the frequency condition (F(2,28) =  3.57, p<0.05, 

η2=0.20, ε=.87). The deviant ERPs for both first-half and second-half of sequence blocks 

are therefore presented separately in Figure 2.  

 

Inspection of the deviant ERPs for both the duration and frequency condition revealed 

order effects to be more pronounced over the first-half than second-half periods of the 

slow changing sequence blocks (see Figure 2 left panels versus Figure 2 right panels). It 

is clearly evident from Figure 2 that the ERP to the first deviant tone tends to be more 

negative (larger) than to the second deviant during the first-half of the blocks (that is 

order 1 and 3 for the 60ms tone and the 1500Hz tone, and order 2 for the 30ms tone 

and the 1000Hz tone). The repeated measures ANOVA confirmed this differential 

modulation of response in a significant sound by order interaction for both the duration 

data (F(2,44) =  6.28, p<0.005, η2=0.22, ε=.92,  quadratic trend F(1,22) =  13.68, p<0.001, 

η2=0.38) and the frequency data (F(2,28) =4.91, p<0.05, η2 =.26, ε=.93, quadratic trend 

F(1,14) = 11.12, p<0.005, η2 =.44). The quadratic trends reflect the opposing direction 

of deviant ERP modulation for the first and second deviant tones in orders 1, 2 and 3 

and this is most apparent in the mean amplitudes plotted in Figure 4 (left panels). 

Follow-up analyses for each sound separately revealed that the quadratic trend on the 

effect of order was significant for the first deviant only for the duration condition (for 

the 60ms sound F(1,22) = 25.83, p<.001, η2 =0.54) and for the second deviant only for 

the frequency condition (for the 1000Hz deviant F(1,14) = 6.75, p<.05, η2 =0.32).  

 



There were no order interactions for the second half data (no main effects or 

interactions) for the duration condition. However, a sound by order interaction was 

evident in the second-half of slow sequence blocks for the frequency condition (F(2,28) 

=  4.68, p<0.05, η2=0.25) but it differed from that in the first-half data. The second-half 

sound by order interaction was characterised by a linear trend only (F(1,14) =  13.94, 

p<0.005, η2=0.50) and reflected a decline in amplitude over orders for response to the 

low deviant but not the high deviant.  

 

< Figure 2 about here > 

 

Standard ERPs – Slow-Changing Sequences 

Order effects were also evident in the ERPs to the sounds when encountered as 

repeating standard tones. Unlike the deviant ERPs, the order effects on the standard 

ERPs endured throughout both the first and second half of blocks. The ERP waveforms 

to the sounds as repetitive standards are presented in Figure 3. In these data the ERP 

response to standard tones exhibits a modulation in the opposite direction to that 

observed for deviants, which is clearly apparent in the extracted amplitudes (Figure 4, 

right) and ERPs (Figure 3). The ERP is more suppressed (less negative) when the sound 

becomes a repetitive standard after first being heard as a rare pattern deviation. 

Repeated measures ANOVAs confirmed this differential modulation of response in a 

significant sound by order interaction for the duration condition (F(2,44) =  7.07, 

p<0.005, η2=0.24, ε=.93, quadratic trend F(1,22) =  7.79, p<0.05, η2=0.26) and the 

frequency condition (F(2,28) =  5.31, p<0.05, η2=0.27, ε=.81, quadratic trend F(1,14) =  

17.10, p<0.001, η2=0.57). These modulations were not modified by block half. Follow-up 

analyses for each sound revealed that the quadratic trend on the order effect was 

significant for the 60ms sound only for the duration condition (F(1,22) = 13.58, p<.001, 

η2 =0.38) and for the 1500Hz sound only for the frequency condition (F(1,14) = 9.12, 

p<.01, η2 =0.39).  

 

 

<Figure 3 about here> 

 



To emphasize the similarity in the pattern modulation in ERPs to duration and 

frequency conditions, the mean amplitudes for the first-half of sequence blocks for both 

conditions are plotted in Figure 4 as a function of order. 

 

 

<Figure 4 about here> 

 

Deviant ERPs – Fast-Changing Sequences 

The clear order effects observed in deviant ERPs for the slow changing sequences were 

not evident to the same deviant tones in the fast changing sequences. The ERPs to 

deviants within the fast-changing sequences are presented in Figure 5. Repeated 

measures ANOVAs revealed a main effect of half for the duration condition (F(1,22) =  

10.54, p<0.005, η2=0.32) reflecting an increase in amplitude in the second half of blocks 

but no interactions. In the frequency condition the same ANOVA likewise produced a 

main effect of half with responses larger in the second half of blocks (F(1,14) =  6.39, 

p<0.05, η2=0.31) and also a main effect of tone with responses to the 1000 Hz tone 

being larger than the 1500Hz tone (F(1,14) =  19.49, p<0.001, η2=0.58). 

 

 

<Figure 5 about here> 

 

Standard ERPs – Fast-Changing Sequences 

The responses to standard tones in the fast changing sequences are presented in Figure 

6. The repeated measures ANOVAs revealed no significant main effects or interactions 

for the duration condition. However, there was a significant quadratic trend for the 

sound by order interaction (F(1,22) =  8.32, p<0.01, η2=0.28). This quadratic trend 

reflects a modulation in the same direction as that seen in the slow sequence for the 

first deviant, but a general increase in suppression in the standard for the second 

deviant across orders. Follow-up analyses for each sound revealed that the quadratic 

trend was significant for 60ms sound only for the duration condition (F(1,22) = 7.84, 

p<.01, η2 =0.26). The frequency condition standard responses were characterised by the 

same modulation seen in the slow changing sequence, namely a sound by order 

interaction with a quadratic trend (F(2,28) =  7.17, p<0.005, η2=0.34, ε=.70, quadratic 



trend F(1,14) =  36.68, p<0.001, η2=0.72). The ERP to standards in the frequency 

condition tended to be less negative or more suppressed the sound had first been heard 

as a rare deviant before becoming a common standard. Follow-up analyses for each 

sound revealed that the quadratic trend was significant for the 1000Hz sound only for 

the frequency condition (F(1,14) = 19.49, p<.001, η2 =0.58). 

 

<Figure 6 about here> 

 

4. Discussion 

 

The results of these experiments show the powerful impact of first-impressions in 

shaping expectations about the structure of the environment. The relative status of two 

sounds, as either common or comparatively rare at sequence onset, can have a profound 

influence over the way future encounters modulate our predictions about these sounds.  

 

The results of the present study confirmed our hypothesis that order-based modulation 

of the ERP responses would be most pronounced (or at least most reliably 

demonstrated) in the early period of the blocks within the slow changing sequences. 

The results observed resemble that in prior studies reporting effects of initial sequence 

structure on the modulation of response to rare deviant sounds (Frost, Winkler, Provost 

& Todd, 2016; Todd, Provost & Cooper, 2011; Todd, 2013a, 2013b, 2014a, 2014b; 

Mullens et al., 2014, 2016). These order effects were replicated here – namely that 

prediction-errors or MMN elicited to a pattern deviation is generally larger at the onset 

of sequence blocks when it was the first-deviant heard in blocks at sequence onset, than 

when the same sound is the rare pattern deviation when the roles reverse1. However, 

for the first time we report results showing that the response to these same sounds as 

common repeating standards is also systematically modulated by the probability of the 

sound at sequence onset. The response to the repeating sound tended to be more 

suppressed in the blocks of the slow changing sequences when it occurred as a standard 

after it was first heard as a rare deviant than in sequences when it was first encountered 
                                                        
1 Note that the modulation of responses to the 30ms deviant in this particular dataset is 
less pronounced than that seen in prior studies (e.g., Todd et al., 2014;Frost et al., 2016; 
Mullens et al., 2014), but is none-the-less significantly different to that seen for the 
60ms deviant.  



as a standard. This tendency is present even though there are 420 repetitions of these 

tones within a block; in other words, the response differences based on order appear to 

be rapidly established and enduring throughout a large number of repetitions.  

 

The impact on both deviant and standard ERPs here exposes the importance of best 

practice in reporting the original ERPs in conjunction with any difference waveforms. 

We have indeed done so in our prior work but the patterns in MMN in those studies 

were clearly dominated by the effects on deviant ERPs.  In the present study the 

amplitude of the modulatory influence on the standard ERP (up to 1µV) was generally 

much smaller than that to the deviant (2µV or more), which might explain why it has 

not been systematically observed in our prior studies. A second reason is that in prior 

studies we have included the data from the fast changing sequences in the same 

analysis (discussed further below), but more importantly, there are only a few studies 

in which the order of tones at sequence onset has been reversed, and reversed back, 

which is useful for two reasons. When only one sequence order is presented the 

physical properties of the tone and the order are confounded, so one cannot easily 

attribute any order effect to the order itself. Secondly, the rotation of order back and 

forth may provide greater power to observe this modulatory influence in quadratic 

trends.  

 

It was hypothesized that the order effects observed in this study would be more 

profound in the slow changing sequences. This hypothesis is based on the 

understanding that the order-dependent effects seen previously are a function of a top-

down modulation of responsiveness. As explained earlier, top-down modulatory 

influences are given priority when there is high precision or confidence in predictions 

about the environment (Friston, 2005). We propose that the long period of initial 

stability in context A of the slow changing sequence is more likely to set up this level of 

precision in predictions, and therefore lead to strong differences in modulation of the 

ERP to the two tones. The impact of this top-down influence does appear to diminish 

across the block duration with the differential modulation of the two deviant tones 

becoming non-significant by the end of blocks. In contrast, the fast changing sequences 

may not confer this same level of precision conducive to strong top-down modulation. 

In line with this prediction, the only order-dependent modulations of deviant ERPs in 



the fast changing sequences were not driven by the role at sequence onset. In contrast, 

the differential modulation of responses to the tones as repetitious events was present 

in the fast changing sequences, albeit apparently weaker in the case of the duration 

condition.  

 

The tendency for order to modulate both deviant and standard responses in these 

datasets can potentially be accounted for by combining the assumptions of the 

hierarchical predictive-coding framework (Friston, 2005) with observations derived 

from value learning (Sutton and Barto, 1998). “Value” may be determined at the onset 

of each sequence based purely on the initial tone probabilities: one rare and 

unpredictable and the other common and predictable. Of the two, the former can be 

considered to hold more “information value” in that we know less about the behaviour 

of this event and cannot yet predict when it will occur. The internal model for the first 

standard may be established rapidly while that to the rare deviant carries high 

uncertainty. The sharp increase in prediction errors when the initial deviant starts to 

repeat in context B for orders 1 and 3 and context A for order 2 should trigger a drop in 

acetylcholine release (see Moran et al., 2013 discussed in the introduction) making the 

system more amenable to rapid model updating. Consistent with this assertion the 

analyses confirm a relative enhancement in suppression of the ERP to the sound when it 

becomes a standard after it was first heard as a deviant. It is noteworthy that the sounds 

used show differential susceptibility to the order effects. In both the duration and 

frequency condition the deviant and standard ERPs tend to be oppositely modulated if 

they are the first rare sound versus the first common sound resulting in the quadratic 

trend for ERP differences to the two sounds over sequence orders. However, the impact 

is not strong enough to result in statistically significant order modulations on each 

sound analysed separately. In the duration condition the order-modulation of 60ms 

tone is consistently the strongest reaching significance for both the deviant and 

standard ERP response. In contrast, the order effects for the frequency condition vary 

for the 1000Hz and 1500Hz sounds. Nonetheless, the visible patterns of modulation 

evident in Figure 4 make clear that the direction of the effects is always consistent with 

an order-dependent modulation. 

 



Animal research confirms that in reward-learning experiments the behavioural 

relevance of a sound shapes receptive fields in auditory cortex, and this reshaping is 

selectively based on the behaviourally relevant component of a complex sensory signal 

in which basic sensory attributes (e.g., sound location and sound intensity) co-vary 

(Polley, Steinberg & Merzenich, 2006). These changes are argued to be top-down in 

origin as they are specific to the task-relevance of the sound properties.  Mullens et al., 

(2015) demonstrated that the order-modulations in the multi-timescale sound 

sequences are also affected by prior experience inducing different levels of behavioural 

relevance of the sound properties. When the same two sounds used in the multi-

timescale paradigm are used in a prior task, behavioural relevance of the sounds (which 

sound the participant was asked to respond to) determined whether the first 

impression bias was seen.  Taken together these observations are consistent with the 

notion that the initial sound probabilities in a sequence create a perceived information-

value differential that generates a long lasting modulatory influence over learning in 

response to those sounds.  

 

In conclusion the results of the present study, in combination with prior work, build a 

convincing case that incidental (task independent) learning of patterns in sound 

sequences engages complex learning mechanisms. It exposes how active inferences 

about the value of events to future learning can distort the effects of simple probabilistic 

learning at very early stages of sensory processing.  The results support hierarchical 

models of sensory inference that suggest patterns can be extracted on multiple 

timescales simultaneously (Kiebel, Daunizeau and Friston, 2008), and exact long lasting 

modulatory influences over lower level sensory relevance filters. We acknowledge that 

some of the hypotheses we have offered about underlying mechanisms, and the 

potential neurochemistry, remain theoretical and require explicit testing in future 

studies. However, the implications are perhaps hardly surprising as for the sensory 

systems to optimally serve the well being of the organism, they should have access to 

how prior learning has shaped priorities. These priors have more lasting effects than 

many current sophisticated models of the statistical learning allow for (Wacongne, 

Changeux and Dehaene, 2012; Lieder et al., 2013), and appear to continue to exert their 

effects until a higher level of surprise is encountered (Mullens et al., 2016). These 

observations attest to the importance of considering contextual factors when assessing 



the apparent limitations of a system (see also Cowan et al., 1993).  Task-independent 

incidental learning studies such as these may teach us about the most endemic 

heuristics to which the brain is sensitive. If one assumes that the bias exists due to the 

advantage it confers, perhaps the first-impression reduces the computational demands 

of modelling all information in the environment with equal diligence (see Daw, Courville 

& Dayan, 2012;Vul, Goodman, Griffiths & Tenenbaum, 2014 for discussion).  
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Figure Captions 

 
 

Figure 1. Pictorial depiction of the three slow changing and fast changing sequence 

pairs used in this study. The lined blocks versus solid blocks represent periods where 

the probabilities of two tones reverse between common (p=0.875) and rare (p=0.125) 

at regular intervals (see text for detail). There was a 40sec silent rest between 

sequences within an order, and a 2 minute silent rest between sequence pairs. Block 

order reversed in order 2 and reversed back in order 3. Data analysis of ERPs 

distinguished between first-half block data (the first-half periods marked “1”) and 

second half block data (second-half periods marked “2”).  

  



 

 

 
Figure 2. Group average right frontal (F4) ERP waveforms to deviant tones in the slow 

changing sequences for the duration condition (top) and frequency condition (bottom) 

for order 1 (blue), order 2 (black) and order 3 (red). In the duration condition the 60 ms 

tone was the first-deviant in order 1 and 3, and the second deviant in order 2. In the 

frequency condition the 1500 Hz tone was the first-deviant in order 1 and 3, and the 

second deviant in order 2.  

  



 
 
Figure 3. Group average right frontal (F4) ERP waveforms to standard tones in the slow 

changing sequences for the duration condition (top) and frequency condition (bottom) 

for order 1 (blue), order 2 (black) and order 3 (red). In the duration condition the 60 ms 

tone was the first-deviant in order 1 and 3, and the second deviant in order 2. In the 

frequency condition the 1500 Hz tone was the first-deviant in order 1 and 3, and the 

second deviant in order 2.  
 
  



 
Figure 4. Group averaged right frontal (F4) ERP peak amplitudes for the duration (A 

top) and frequency (B bottom) deviant (left) and standard tones (right). The black lines 

represent the tone that was the first-deviant (second standard) in order 1 and 3, and 

second-deviant (first standard) in order 2. The blue lines represent the tone that was 

the second-deviant (first standard) in order 1 and 3, and first-deviant (second standard) 

in order 2. Error-bars represent standard error of the mean. 

  



 

Figure 5. Group average right frontal (F4) ERP waveforms to deviant tones in the fast 

changing sequences for the duration condition (top) and frequency condition (bottom) 

for order 1 (blue), order 2 (black) and order 3 (red). In the duration condition the 60 ms 

tone was the first-deviant in order 1 and 3, and the second deviant in order 2. In the 

frequency condition the 1500 Hz tone was the first-deviant in order 1 and 3, and the 

second deviant in order 2.  

  



 
Figure 6. Group average right frontal (F4) ERP waveforms to standard tones in the fast 

changing sequences for the duration condition (top) and frequency condition (bottom) 

for order 1 (blue), order 2 (black) and order 3 (red). In the duration condition the 60 ms 

tone was the first-deviant in order 1 and 3, and the second deviant in order 2. In the 

frequency condition the 1500 Hz tone was the first-deviant in order 1 and 3, and the 

second deviant in order 2.  
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